Avoiding Common MATLAB Mistakes

Wyatt Cross

October 2025

Contents

(1__Introduction|
2__Powers of 10|
|3 Natural Logarithm)|

4 Exponential Functions|

[5 Plotting Continuous and Discrete Datal

6 F : [F ron Hand]

7 Complex Numbers|

[8 Infinity and Zero|
9 Loops
(10 How to Write a Good Comment|

U s A Wy NN R

1 Introduction

I'set out to create this document to correct common errors that engineering students make when programming
in MATLAB for Dr. B’s Numerical Methods class at UF (EGM 3344). I have made many of them myself,
and it can take practice to adjust to the way MATLAB works. The goal is to help you understand common
engineering-focused misconceptions that might make you lose points or appear inexperienced. This is also
not targeted at any student in particular.

In this document, valid MATLAB commands are written in monospace like this: log(x).

2 Powers of 10

When given a percent error or tolerance value of 1076%, there are several correct ways to write it in MATLAB.
107°% =107 =1.0 x 107 = 10"-8 = 1e-8
The following will produce an inaccurate number:
107-6, 1°-8, 10e-8, 1le-7
A percent sign divides the number by 100, so 1076% = 10~8.

tolerance = 1e-8; J Correct
tolerance 10°-8; % Correct

3 Natural Logarithm

MATLAB uses log(x) for the natural logarithm (base e). This differs from many calculators or math
textbooks, where 1n(x) is used. The following table summarizes common notation conventions across fields.

Mathematical Notation Engineering Notation MATLAB Syntax
log base e y =1In(x) y = log(z) y = log(x);
log base 10y = log;,(x) y = logqo(z) y = loglo(x);

Table 1: Mathematicians may also use log() and Engineers may use 1n(), but this table gives common
notation.

In MATLAB, log() is always base e, while 1og10() is explicitly base 10.

4 Exponential Functions

In MATLAB, the exponential function, e”, is defined as exp().

x

y=-e — y = exp(x);

A common mistake is confusing the mathematical constant e (Euler’s number, e 2 2.71828) with the expo-
nential function e*. Doing 2.71828% is incorrect. You can use exp(1) to represent the mathematical constant
e if you need 2.718281828459045... for anything.

5 Plotting Continuous and Discrete Data

Engineers must be able to distinguish between continuous functions and discrete data points. Understanding
this difference helps you avoid making misleading plots.

Continuous Data

Continuous data come from mathematical expressions or simulations where you can evaluate many points.
Crucially they share the property that greater refinement in an area of the plot can be achieved by increasing
the density of points in the domain. In other words, if you desire greater detail between 0 and 1, you can
sample more points in that interval. In the following example, you are able to cleanly increase the number
of points in the domain, x, by altering the linspace() function.

x = linspace(0,2*pi,1000) ; % Creates the domain to evaluate

y = sin(x); % Evaluates the domain using the sine function
plot(x, y, 'LineWidth', 1.5) % Plots the domain and range with a thicker line
xlabel('x"') % Label horizontal axis

ylabel ('sin(x)"') % Label vertical axis

title('Continuous Sine Function') % Add a descriptive title

grid on % A grid makes the plot easier to read

Discrete Data

Discrete data generally come from real-world measurements or samples. A key property of discrete data is
that if you have points at 0 and 1 and want to know what happens between them, the only truly accurate
method is to increase your sampling resolution when you run your experiment. Simply drawing a line between
points can provide a visual estimate, but it may incorrectly suggest that the data is continuous as there are
no markers on individual points.

A caveat is that if you fit a function such as a polynomial or sinusoid to your data, the resulting model is
mathematically continuous, even if the original data were discrete[l]

When plotting discrete data in MATLAB, it is best to use markers or stem plots to clearly indicate
individual data points and avoid implying continuity. In the following example, circular markers on each
point are sufficient to indicate that the points are discrete.

x = 0:1:10; % Domain, this could be measurements taken every second for 10 seconds
y = [3, 2, 1, 1.5, 2.5, 3, 2.5, 1.5, 1, 2, 3]; % Range of data collected
plot(x, y, 'o-') % Plot result as circles connected by lines

FFT Example: The discrete Fourier transform (DFT) of a signal is another case where stem plots are
useful. Here is an example computing the Fast Fourier Transform (FFT) of a simple discrete signalﬂ and
plotting its magnitude using stem.

x = 0:0.1:2%pi; % Create time domain

y = sin(2*pi*1xx) + 0.5*%sin(2*pix*3*x);) Create the signal: 1Hz wave + 3Hz wave

Y = fft(y); % Compute the Fast Fourier Transform (FFT)

n = length(Y); % Count the number of data points

Fs = 1/0.1; % Sampling Frequency = 1/sample interval

f = (0:n-1)*(Fs/n);) Frequency vector for plotting

stem(f, abs(Y)/n) % Plot using stem(), 'abs(Y)/n' normalizes frequency magnitude

xlabel ('Frequency (Hz)')

ylabel ('Magnitude')

title ('FFT of a 1Hz and 3Hz signal')
grid omn

6 Functions and Function Handles

Functions in MATLAB let you reuse code efficiently. For example, define a file named squareNum.m:

function y = squareNum(x) J Specifies function name and the output variable, y
y = x.72; % The dot '.' ensures this works for vectors (element-wise)
end % An 'end' is required to define the MATLAB function

You can call this in your script as:

squareNum (3)

Functions can also be included in a script if they are placed at the very end of your script, after all other
code that you plan to run.

A Function Handle (denoted by the @ symbol) is essentially a reference to a function. It allows you to
treat a function like a variable, which is helpful when you need to pass a function as an argument to another
function (such as in ODE solvers or optimization). Anonymous functions are a common use for function
handles as you can define them anywhere inline in your code and are often sued for simple expressions. For
example:

1This assumes that the fitted function itself is continuous. For example, a function such as tanh() is only continuous within
its valid domain, and some fit types (piecewise or hyperbolic) may introduce discontinuities if handled incorrectly.

2But I thought that the output of a mathematical function such as sine was continuous? In this case as the domain consists
of a finite number of points, so the FFT is attempting to fit continuous functions (sinusoids) to discrete points. The resulting
frequencies are discrete as the FFT cannot resolve every possible continuous frequency due to the finite domain. This is a
consequence of doing the DFT or FFT numerically.

f = @(x) x.72 + 3*x - 5; Y Squaring using '.' lets this work with vectors
fplot(f, [-5 5]) % fplot() is used to plot the ouput of f() over a given interval
£(2) % This is how you call a function handle somewhere else in your code

Function handles are especially useful when given various mathematical functions to evaluate every iteration
in a numerical method. Specifically, they make defining functions and their derivatives very easyE|

f = @(x1,x2) x1.72 + x2; % Define a 2-variable function
dfdxl = @(x1,x2) 2%*x1; % Take the derivative with respect to x1
£(2, 1) % Evaluate the original function (=5)

dfdx1(2, 1) % Evaluate the derivative (=4)

7 Complex Numbers

MATLARB reserves both the letters i and j as the imaginary unit v/—1 (i.e., i? = —1). Computer program-
mers like to use i,j,k as loop indices because they correspond to common vector/matrix/tensor notation.
This can cause issues with how MATLAB defines the imaginary unit, and makes your code unclear, as the
reader has to make sure you are talking about an integer index in a loop, as opposed to a complex number.

x1
x2
for 1i=1:100 J Correct use of i as an index. ii and jj are convention in MATLAB

5 + 3i; J, Defines a complex number: 5 + 3i
5 + 3j; % Also defines a complex number: 5 + 3i

Another option is to use index or some other word as your loop index.

8 Infinity and Zero

MATLAB has special reserved keywords to represent mathematical concepts of infinity and numbers very
close to zero. Using these keywords is better than manually entering a large or small number.

Infinity (Inf): The keyword Inf represents positive mathematical infinity (co0). It can arise from mathe-
matical operations like dividing a non-zero number by zero.

Specifically, when setting up numerical methods with an error inequality, Inf should be used to define the
error variable so the method works with any input. In the following example, the error of the function, err,
must be defined before the loop, however it must also always be greater than the tolerance value, so the loop
has an opportunity to run at least once.

tolerance = 1e-8;
err = Inf;
while err > tolerance
% Numerical method here
% err = {Some error frunction using the result of the methodl};
end

Not a Number (NaN): NaN is a value that represents undefined results from mathematical operations.

This often occurs when a function is undefined (like tan(w/2) or §). Any operation involving a NaN will

almost always result in NaN. When debugging, a NaN in your output is a strong indicator of a division by
zero or a bad function call earlier in your code.

3Note, a human (the author) took the derivative using the brain. MATLAB did not do calculus.

Epsilon (eps): eps is the keyword for Machine Epsilon, the smallest number € that can be added to the
number 1 and still be distinguished from 1 in the computer’s floating-point arithmetic system.

9 Loops

For Loops

For loops are generally used when iterating through data of fixed and known size such as a dataset you are
provided with or looping through elements of a vector/matrix. If you are using a for loop when solving a
numerical method to within a given tolerance, you are doing it wrong

While Loops

While loops are used when you do not know how long a method will take to converge. They follow the form
while {boolean}, where you can use an inequality to check convergence every iteration.

One common incorrect hack is to set the loop always true and use an if condition in the loop to determine
when to exit. This is redundant and confusing. Do not do this. Instead, you can usually take the contents
of your if statement in the loop and put it in the line that creates your while loop.

while true J Do not do this
% Method would go here
if err > tolerance 7% Look how easy it is to move the inequality up
break % This is redundant since the loop will break automatically
end
end

Additionally, many decide to add a maximum iterations limit to their loop, likely because that is how the
textbook/Chegg/Generative Al does it. Regardless, if you set up your loop correctly, using a iteration limit
is unnecessary for all methods with a bracket and for good guesses in bracket-less methodsEI

maxIter = 1000; % Not needed if you set the problem up correctly

count = 0;

while count < maxIter & err > tolerance 7 Do not include the maxIter part
% Method would go here
count = count + 1;

end

Using while true or while count < maxIter in your script is wrong and will lose you points.

10 How to Write a Good Comment

MATLAB uses the percent sign (%) for comments. Explain why you chose to do something that line, do
not restate what your syntax does. Also, placing a % X’s method and no additional comments at the top
of your loop is not helpful. The goal is to allow someone unfamiliar with your specific code to understand
what you are doing each line. This does not mean you have to give detailed comments when you are plotting
(most MATLAB users know how labels and titles work) but, key inputs, loops, and lines in your method
should be explained.

In the same vein, variables should have concise names. You do not need 20 characters to explain that you
have a derivative, d{func}d{derivative} is sufficient.

4If you are writing flight software for the Space Shuttle, you get to use a 3 iteration fixed point method to solve Kepler’s
Equation. The rest of us have more that 25Hz computers (not MHz or GHz) and can afford to use a while loop to solve.

5Tteration limits are fundamentally a safety check to stop your code if a loop fails to converge. They should not be the
primary mode of exiting the loop. In EGM 3344, understanding ways of quantifying error is an important part of the class and
using maxIter defeats the whole purpose of understanding and implementing error calculations correctly.

	Introduction
	Powers of 10
	Natural Logarithm
	Exponential Functions
	Plotting Continuous and Discrete Data
	Functions and Function Handles
	Complex Numbers
	Infinity and Zero
	Loops
	How to Write a Good Comment

